

Introduction to Basis Sets and the SCF Method

Lecture # 03

Instructor: Dr. Muhammad Ali Hashmi

January 08, 2021

Key Concepts

- In this lecture we 'll learn:
- Molecular Orbitals
- Basis Functions and Basis Sets
- Minimal Basis Set

Molecular Orbitals

We represent our electronic structure with a set of orbitals.

C-C π -bond in ethene

We represent molecular orbitals as a linear combination of basis functions.

coefficient in linear expansion (called molecular orbital coefficients)

Basis Functions & Basis Set

- The atom-centred functions used to describe the atomic orbitals are known as basis functions and collectively form a basis set.
- ✓ Electron density is large in core orbitals, bonds, lone pairs, etc.
- ✓ Electron density is small far away from nuclei.

- A <u>basis set</u> is a set of basis functions that are centered on a specific atom.
- Larger basis sets give a better approximation to the atomic orbitals as the place fewer restrictions on the wavefunction.
- Larger basis sets attract a higher computational cost.

Basis Set

- Basis sets usually include <u>at least</u> 1 basis function for each type of occupied orbital on the atom.
- Each contracted Gaussian function represents 1 atomic orbital.
- The simplest possible atomic orbital representation is called a minimal basis set.
- Minimal basis sets contain the minimum number of basis functions to accommodate all of the electrons in the atom.
- For example:
 - \rightarrow H & He a single function (1s)
 - \geq 1st row 5 functions, (1s, 2s, 2 p_x , 2 p_y , 2 p_z)
 - \geq 2nd row 9 functions, (1s, 2s, 2p_x, 2p_y, 2p_z, 3s, 3p_x, 3p_y, 3p_z)

Minimal Basis Sets

- The STO-3G basis set is a minimal basis set where each atomic orbital is made up of 3 Gaussians. STO-nG also exist.
- Minimal basis sets are not well suited to model the anisotropic effects of bonding
- Because the exponents do not vary, the orbitals have a fixed size and therefore cannot expand or contract

Basis Set

- Example:
- Carbon = $1s^2 2s^2 2p^2$
- 1 contracted Gaussian for the 1s orbital
- 1 contracted Gaussian for the 2s orbital
- 1 contracted Gaussian for the 2p orbital
- the 2p contracted Gaussian would be multiplied by a 'p' angular function to give 3 different basis functions

Note that 3 p functions are included even though there are only 2 p electrons on Carbon

These are the minimum number of basis functions that must be included for each atom

Single and Multiple Zeta Basis Set

- Single-zeta (ζ) basis set include one contracted Gaussian basis function for each occupied type of orbital on the atom.
- These are also called minimal basis sets.
- Multiple-zeta basis set include multiple contracted Gaussian basis functions for each occupied type of orbital on the atom.

Benefits of Multiple Zeta Basis Sets:

- Each contracted Gaussian function gets a variational coefficient in the definition of molecular orbitals
- More coefficients means more variational flexibility to get a lower energy wavefunction
- More basis functions gives more flexibility in describing bonding

Split Valence Functions

- Split-valence basis sets model each valence orbital by two or more basis functions that have different exponents
- They allow for size variations that occur in bonding

 Examples include the double split valence basis sets, 3-21G and 6-31G, and triple split valence basis sets such as 6-311G

Polarization Functions

- Polarization functions have higher angular momentum
- They allow for anisotropic variations that occur in bonding and help model the inter-electronic cusp.

Examples include 6-31G(d) or 6-31G* which include d functions on the heavy atoms and 6-31G(d,p) or 6-31G** which include d functions on heavy atoms and p functions on hydrogen atoms.

Diffuse Functions

- Diffuse basis functions are additional functions with small exponents, and are therefore large
- They allow for accurate modelling of systems with weakly bound electrons, such as
 - ✓ Anions
 - ✓ Excited states
- A set of diffuse functions usually includes a diffuse s orbital and a set of diffuse p orbitals with the same exponent
- Examples in include 6-31+G which has diffuse functions on the heavy atoms and 6-31++G which has diffuse functions on hydrogen atoms as well.

Examples

Basis set	Description	No. functions			
		Н	C,O	H_2O	C_6H_6
STO-3G	Minimal	1	5	7	36
3-21G	Double split-valence	2	9	13	66
6-31G(d)	Double split-valence with polari-	2	15	19	102
	sation				
6-31G(d, p)	Ditto, with p functions on H	5	15	25	120
6-311+G(d, p)	Triple split-valence with polarisa-	6	22	34	168
	tion, p functions on H and diffuse				
	functions on heavy atoms				

Different Basis Sets

Basis Set Type	People Basis Sets	Ahlrichs Basis Sets	Duning Huzinga Basis Sets	Misc.
Double ζ	6-31G	Def2-SVP	cc-pVDZ	LANL2DZ
Triple ζ	6-311G	def2-TZVP	cc-pVTZ	LANL2TZ
Quadruple ζ		Def2-QZVP	cc-pVQZ	

Accuracy and Basis Set

- The accuracy of the computed properties is sensitive to the quality of the basis set.
- Consider the bond length and dissociation energy of the hydrogen fluoride molecule:

Basis set	Bond Length (Å)	D ₀ (kJ/mol)
6-31G(d)	0.9337	491
6-31G(d, p)	0.9213	523
6-31+G(d)	0.9408	515
6-311G(d)	0.9175	484
6-311+G(d, p)	0.9166	551
Expt.	0.917	566

The Self-Consistent Field (SCF) Method

- Simply, to calculate a potential energy surface, we must solve the electronic Schrödinger equation for a system of n electrons and N nuclei, over a range of nuclear coordinates.
- This is termed an ab intio method, since it is derived from 'first principles.
- Generally, the real wavefunction of a system is too complex to be found directly but can be approximated by a simpler wavefunction.
- This then enables the electronic Schrödinger equation to be solved numerically.

The Self-Consistent Field (SCF) Method

The self-consistent field method is an iterative method that involves selecting an approximate Hamiltonian, solving the Schrödinger equation to obtain a more accurate set of orbitals, and then solving the Schrödinger equation again with theses until the results converge.

The SCF Process

- 1) Guess a set of MOs
- 2) Use MOs to compute one-electron terms arising from the kinetic energy of the electrons and the nuclear attraction energy, two-electron terms associated with the coulomb repulsion between the electrons, two-electron terms associated with the exchange of electronic coordinates
- 3) Solve the equations for energy and the new MOs
- 4) Are the new MOs different? Yes \rightarrow (2), No \rightarrow (5)
- 5) Self-consistent field (SCF) converged

Important Software

- MS Word (Word Processor)
- Endnote (Referencing Software)
- ChemDraw (To Draw Chemical Structures)
- Dropbox
- GaussView
- Gaussian